

THE INSTITUTE OF POWER **ENGINEERING**

THERMAL DIVISION

"ITC" in Łódź

93-208 Łódź, ul. Dąbrowskiego 113

www.itc.edu.pl, e-mail: itc@itc.edu.pl

ITC Topic: 04230029

Registration no: 8764

Job title

Determination of acoustic properties of MARBET lamella panels on felt

Authors:

mgr inż. Patrick Gaj

mgr inż. Kamil Wójciak

dr inż. Joanna Kopania

Manager:

inż. Włodzimierz Pryczek

Branch Manager:

dr inż. Jacek Karczewski

Making the facility available for

testing

September 2023.

Start of work

September 2023.

Completion of

work

September 2023.

pages 9 figures: 2 charts: tables: 4 literature items: 3

> Issue date 07.09.2023.

Distribution list

- 1. IEn OTC "ITC", CITE
- 2. MARBET Sp. z o.o.

1 copy

2 copies

Determination of acoustic properties of MARBET lamella panels on felt

Page

TABLE OF CONTENTS

1	Introduction	1
2	Scope of testing	1
	Method of measurement	
4	Literature	4
5	Test of WOODLINE lamella panels on felt	5

Determination of acoustic properties of MARBET

lamella panels on felt

Page

1 Introduction

The job was ordered by MARBET Sp. z o.o. under the topic 04230029.

The testing involved measuring sound absorption in a reverberation chamber and calculating sound absorption coefficient of WOODLINE lamella panels on felt manufactured by Marbet sp. z o.o.

2 Scope of testing

The scope of the testing included:

- sound absorption measurements in a reverberation chamber
- calculation of the sound absorption

coefficient for the items presented in this report.

3 Method of measurement

Test method: according to EN ISO 354:2005 'Acoustics - Measurement of sound absorption in a reverberation chamber'.

The test station and test room met the requirements of EN ISO 354:2005 'Acoustics - Measurement of sound absorption in a reverberation chamber'.

The test samples were subjected to a minimum of 24 hours of acclimation in the reverberation chamber before the measurements began. The components supplied for testing were installed on the floor in the Laboratory's right-hand reverberation chamber.

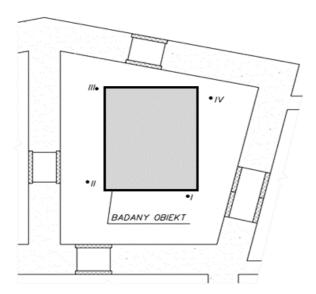


Figure 1. Tested sample installation sketch

Test station

Determination of acoustic properties of MARBET lamella panels on felt

Page

Test site		right-hand reverberation chamber	
	volume	245,6 m ³	
Technical	total surface area of partitions	235,0 m ²	
data	limiting planes	non-parallel	
uata	additional	none	
	distractors	none	
		the tested components were placed on the	
Sample inct	allation method	floor of the reverberation chamber, none	
Sample mst	anation method	of the sides (edges) were additionally	
		secured	

Measuring apparatus

Name		Type	Manufacturer	Manufactur er no.
	meter	Nor140	Norsonic	1407332
Measuring set Nor140	condenser microphone	Nor1225	Norsonic	358181
	preamplifier	Nor1209	Norsonic	21954
Loudspeaker	loudspeaker set 24Ω	special set	Tonsil	-
array	power amplifier	LV 103	MMF	1540/35
calibrator		Nor1256	Norsonic	125626714
microphone s	wivel arm	Nor265	Norsonic	29487
barometer		HD 9908T	Delta OHM	11002854
thermohygror	neter	HD 2717T.D0	Delta OHM	11032846
Tape measure	,	30 m	Richter	2134

Determination of acoustic properties of MARBET lamella panels on felt

Page

Method of determining the reverberation sound absorption coefficient

Two series of chamber reverberation time measurements were made:

- time T₁ empty chamber reverberation, s,
- time T₂ reverberation time of the chamber with

installed panels, s. The analysis of the test results included the calculation of:

- the average reverberation time for empty chamber T₁ and for the chamber with the tested sample T₂ in accordance with EN ISO 354:2005,
- determination of the equivalent sound-absorbing surface area for empty chamber A1, m2 according to:

 $A_1 = \frac{55,3 \cdot V}{c_1 \cdot T_1} - 4 \cdot V \cdot m_1$

where

:

- o V volume of the reverberation chamber, m3,
- o c1 speed of sound in air, at a given temperature, m/s,
- o T₁ reverberation time of empty reverberation chamber, s,
- o V volume of empty reverberation chamber, m2,
- o m₁ power damping factor, 1/m, from the relation:

$$m1 = \overline{10 \cdot \lg(e)}$$

where:

- α damping factor, due to absorption by the atmosphere, determined in accordance with PN-ISO 9613-1:2000, dB/m.
- determination of the equivalent sound-absorbing surface for empty chamber A1,m² according to:

$$A_2 = \frac{55,3 \cdot V}{c_2 \cdot T_2} - 4 \cdot V \cdot m_2$$

• of the equivalent sound absorption area of the tested material A_T m², from the relationship:

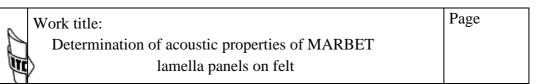
$$A_T = A_2 - A_1$$

• of the sound absorption coefficient α_w from the formula:

$$\alpha_{\rm w} = \frac{A_{\rm T}}{S}$$

where:

 \circ S - test sample area, m².


On the basis of the tests carried out in accordance with section 5 of EN ISO 11654:1999, the sound absorption coefficient αw , the shape indicator and the sound absorption class were determined in accordance with Annex B of the aforementioned standard.

Determination of acoustic properties of MARBET lamella panels on felt

Page

4 Literature

- 1) EN ISO 354:2005 'Acoustics Measurement of sound absorption in a reverberation chamber',
- 2) EN ISO 11654:1999 'Acoustics Sound-absorbing products for use in buildings Sound absorption coefficient',
- 3) PN-ISO 9613-1:2000 'Acoustics sound dumping during propagation in an open space Calculation of sound absorption by the atmosphere'.

5 Test of WOODLINE lamella panels on felt

Date of measurement: 04.09.2023 r.

Name/type	MARBET WOODLINE		
One sample length		mm	2700
One sample width			300
One sample surface area			0.810
Number of samples to be tested		pcs.	13
Total surface area		m²	10.53

Figure 2. Photo (close-up) of the tested item.

Table 1 Environmental conditions

		Chamber with the tested item		Empty	chamber
		Before measurement	After measurement	Before measurement	After measurement
Air temperature	°C	21.2	21.3	21.1	21.2
Atmospheric Pressure	hPa	1000	1000	1000	1000
Relative humidity	%	53.0	52.8	52.3	52.2

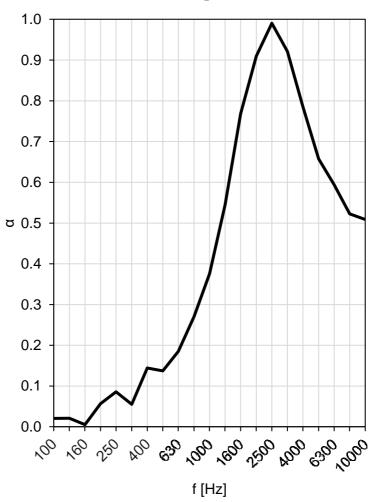
Work title:	Page
Determination of acoustic properties of MARBET	
lamella panels on felt	

Table 2
Characteristics of chamber reverberation time

	Average	Standard	Average	Standard
fśr	reverberation	reverberation	reverberation time	reverberation
	time of empty	time deviation	of the chamber	time deviation
	chamber T1	E20(T1)	with tested item T2	E20(T2)
Hz			S	
100	4.688	0.357	4.566	0.352
125	4.727	0.321	4.600	6.246
160	4.209	0.267	4.183	6.522
200	4.249	0.240	3.984	6.714
250	4.734	0.227	4.257	7.142
315	4.693	0.201	4.379	7.692
400	5.017	0.185	4.181	7.846
500	5.148	0.167	4.308	8.367
630	4.741	0.143	3.816	8.517
800	4.348	0.122	3.282	8.568
1000	4.151	0.106	2.901	8.617
1250	3.675	0.089	2.366	8.482
1600	3.138	0.073	1.883	8.374
2000	3.358	0.068	1.821	8.560
2500	3.492	0.062	1.786	8.877
3150	3.298	0.053	1.793	9.560
4000	2.987	0.045	1.813	10.458
5000	2.481	0.037	1.710	11.251
6300	1.994	0.029	1.503	11.801
8000	1.452	0.022	1.200	12.120
10000	1.014	0.017	0.888	12.055

designations used in the table above,:

- T₁, T₂ chamber reverberation times determined during the tests: without and with a sample, s,
- $\epsilon_{20}(T_1)$, $\epsilon_{20}(T_2)$ standard deviation of reverberation time, determined in accordance with PN-EN ISO 354:2005, p. 8.2.2, dB.


Determination of acoustic properties of MARBET lamella panels on felt

Page

Table 3

Characteristics of the reverberation sound absorption coefficient

Character isti				
fśr	Ат	αs		
Hz	<i>m</i> 2	-		
100	0.217	0.021		
125	0.221	0.021		
160	0.054	0.005		
200	0.595	0.057		
250	0.902	0.086		
315	0.580	0.055		
400	1.518	0.144		
500	1.444	0.137		
630	1.948	0.185		
800	2.847	0.270		
1000	3.957	0.376		
1250	5.740	0.545		
1600	8.091	0.768		
2000	9.582	0.910		
2500	10.429	0.990		
3150	9.700	0.921		
4000	8.268	0.785		
5000	6.926	0.658		
6300	6.254	0.594		
8000	5.504	0.523		
10000	5.359	0.509		

designations used in the table above:

- AT equivalent sound absorption area of the test sample, m²,
- as test sample sound absorption coefficient, -.

_	
Sound absorption coefficient α _w	0.25
Shape determiner	Н
Sound absorption class	${f E}$

The sound absorption coefficient, sound absorption index, shape indicator and sound absorption class do not depend on the dimensions of individual samples.

The laboratory declares that the results of the test refer exclusively to the tested item.

Without the written consent of the Testing Laboratory, this report may not be reproduced except in its entirety.